

Loading and Extracting HFM 11.1.2.4 data with ODI Knowledge Modules

Introduction

Oracle Hyperion Financial Management (HFM) is an Enterprise Performance Management (EPM) tool
that provides financial consolidation and reporting that enable users to rapidly consolidate and report
financial results, meet global regulatory requirements, reduce the cost of compliance, and deliver
confidence in the numbers.

Like other EPM tools, HFM relies on dimensions (metadata) and fact measures (data) that are loaded
into the tool and used to create reports. Prior to its latest version (11.1.2.4), HFM could use Oracle Data
Integrator (ODI) to load such metadata and data into the tool, which led large companies to build large
environments around HFM and ODI integrations.

However, in HFM's latest version, Oracle decided to remove its support for ODI, meaning that all HFM
integrations would have to move from ODI to manual iteration with HFM, another integration tool
would have to be used, or custom code would have to be created using the new Java HFM API. For new
HFM implementations, the impact of Oracle’s decision could perhaps be managed, but for existing
integration processes it would have a great impact, since none of the available options are smoothly
implemented within large existing environments.

This article focuses on how we can achieve data load/extract from/to HFM using ODI Knowledge
Modules (KMs) built using the new Java HFM API. With this kind of ODI KMs, companies can continue
with legacy ODI/HFM integrations without the need to drastically change integration processes or add a
new tool into their environment. New HFM implementations could also benefit from these ODI KMs,
since they allow any kind of complex ETL logic on metadata and data before easily loading it to HFM.

Since this article is the second of a two series that talks about HFM 11.1.2.4 integration with ODI (the
first article may be found at the OTN webpage, which link is in the Appendix Section) we will skip the
details around HFM integration’s current state, HFM Java API architecture requirements and ODI agent
configuration. Instead we will focus on how the ODI IKM for data load and the ODI procedure for data
extract were created and how to use them.

ODI Data Integration Knowledge Module for HFM 11.1.2.4

This section will describe the concepts used to create the ODI Data IKM for HFM11.1.2.4. Although the
majority of ODI/HFM developers will want only to import the ODI IKM (links to its download can be
found in the APPENDIX section) and use it in their projects, this article will describe the main steps and
decisions that were made to create this IKM. Understanding how it works behind the scenes will allow
you to make changes to its code if necessary.

Similarly to the Metadata IKM shown in the first article, the Data IKM will also try to automate the
manual steps that are used to load data to HFM. In resume, ODI will create a data file based on the
source tables, send this data file to HFM and optionally ODI may send a consolidation task to HFM based
on a consolidation POV.

ODI
HFM

ODI creates a data file
and sends to HFM

ODI

HFM completes the task
and generates a log

<Optional> ODI sends
consolidation command

HFM

Figure 1- ODI data load to HFM

ODI Data IKM is fairly simple and contains only four steps. The first one (Generate File) is responsible to
generate a valid HFM data file based on the source tables mappings. This gives the user the ability to
create any kind of ETL process before loading that data to HFM, as is expected from any ODI interface.

Figure 2- ODI IKM Data steps

The data file that is created by ODI is very simple and straight forward as it will only contain “!DATA” as
a header and below that the POV where this data will be loaded into HFM. This file will be created
temporarily on the location set by “DAT_FILE_LOCATION” IKM option and may be set to be deleted after
the load is completed depending on the “DELETE_LOAD_FILE” option.

Figure 3- Example of HFM data file

The second step (Load File) is a little bit more complex and it is the place where the new HFM Java API is
called to login into HFM application, set the load options based on what the user developed in the ODI
interface, load the pre-generated file into HFM and finally getting any log that this data load may have
generated (including “bad data” members).

The third step (Consolidate) is optional as you may select if you wish to run a consolidation task after the
data load or not based on “CONSOLIDATE_AFTER_LOAD” option. If the user selects to run data
consolidation, ODI will get “CONSOLIDATE_POV” option and send it as a parameter to HFM
consolidation process. The pattern used for the consolidation POV is the same one as used in prior
versions of HFM KMs, as for example “S#ACTUAL_USD.Y#2016.P#Mar.E#3450”. This example would
consolidate the data based on ACTUAL_USD Scenario, 2016 Year, Mar Period and 3450 Entity members.

The forth step (Delete File) is also optional, since you may select to delete or not the data file created for
this data load process. This option is very useful for debugging processes where you may check exactly
what was sent to HFM but probably the developers will set it to “True” on production environments,
meaning that ODI will delete the file automatically after the data load process.

ODI IKM Data usage

After HFM data store information is correctly reversed inside ODI with the new ODI RKM (showed in the
first article) and the new "IKM SQL to Hyperion Financial Management Data 11.1.2.4 Java API" is
imported, it's time to build the data load interface. You'll notice that it has many more options than the
old IKM for HFM Data. This is because the new IKM basically works in a two-step process: first it creates
a data file in a folder location, then it gets this data file and loads it to HFM.

The creation of this data file has some setups that need to be defined in the ODI interface object, for
which we use the IKM options. The table below lists all the available options and a description of how to
use them.

Option Description E.g. Values
CONSOLIDATE_ONLY Flag to indicate if this is

Consolidate only
process.

True
False

IMPORT_MODE Specifies one of the
load options.

DATALOAD_DUPLICATE_
HANDLING.DATALOAD_MERGE

ACCUMULATE_WITHIN_FILE Flag to indicate
whether to accumulate
values in the load data.

True
False

CONSOLIDATE_AFTER_LOAD Flag to indicate
whether consolidate
should be performed
after the data load.

True
False

CONSOLIDATE_POV Specifies the
parameters for
consolidate operation.

S#ACTUAL_USD.Y#2016.P#Mar.E#3450

CONSOLIDATE_TYPE Specifies the
parameters for
consolidate Type.

WEBOMDATAGRIDTASKMASKENUM.
WEBOM_DATAGRID_TASK_CONSOLIDATE

DAT_FILE_DELIMITER Defines which delimiter
will be used in the .DAT
file creation.

; , | *

DAT_FILE_LOCATION Defines the folder
location where the
.DAT file will be created
and stored before
loading to HFM.

C:/Temp/HFM_Load.dat

DELETE_LOAD_FILE Flag to indicate if .DAT
file should be deleted in
the end of the process
or not.

True
False

LOG_LOCATION Log File Location and
name.

C:/Temp/HFM_Load.log

Table 1- IKM Data options

Since all options are self-explanatory and have further detailed explanation on the ODI IKM “help” field
of each of them, we may start to create the ODI interface itself. In this example we will load data from
an Oracle table. Its creation is the same as any other interface: you may do joins, filters, ETL
modifications to the mapped columns, and so on.

Figure 4- ODI interface example

Note that, since our target is an HFM application, we need to set our Staging Area to a valid Oracle
Logical Schema (probably the same used in our source data store) in order to do any ETL to the data.

Figure 5- Set the correct Staging Area

In the Flow tab, select the options needed for your integrations and execute the interface. If all goes
well, you will see green steps in the ODI Operator, indicating that the data was successfully loaded to
the HFM application. You may also check the data file created on the folder that you added in the IKM
option and the log that HFM generated for this process.

Figure 6- HFM data load log

As we can see, this is a very easy and transparent way to load data into HFM, using the same approach
as the old version of ODI/HFM KMs.

ODI Data Extract procedure for HFM 11.1.2.4

First of all we need to understand why we are using an ODI procedure instead of an ODI KM for data
extraction processes. The reason behind this decision was based on the nature of HFM data extracts,
which automatically creates the outbound tables for the users containing all the extracted data and
dimensions related to it. For example, when we send an extract command to HFM with a certain POV,
HFM will create a fact table and a table for each dimension it contains using a pre-determined prefix
(called “TIEOUT” in this article’s example).

Figure 7- Tables automatically created by HFM Extract process

Since HFM create those tables automatically for the users, there is no reason to have an ODI interface to
map it since the data would not go to the target table in the ODI interface but instead the data would go
to those pre-defined HFM tables. Of course that we could elaborate an ODI KM that could send the
extract command to HFM, which would populate the fact and dimension tables automatically and after
that the KM code would read those tables and populate another target table that would be set in the
ODI interface but the complexity to do that is not worth the work. It is way easier to run a procedure
that will run the HFM extract and later on we may create another ODI interface that may read from
those fact and dimension tables and do any ETL that we may want with them.

The “Extract Data from HFM” procedure is very simple and only contains two steps. The first step “Get
HFM DB Connections” is used to get the DB user and password where the tables will be created. This DB
connection needs to be the same one that is configured in HFM “Configure DNS” setup (more about that
in a few).

Figure 8- Extract procedure steps

The second step “Extract Data from HFM” contains the Java code that connects to HFM and send the
extract command using a certain POV and a table prefix for the tables’ creation.

ODI Extract Data Procedure usage

After importing “Extract Data from HFM” procedure into ODI you will need to create two ODI logical
schemas. The first logical schema will point to the database where the extract tables will be created and

this DB needs to be the same one that you configured in HFM “Configure DNS” setup (found at
“Consolidation Administration” on HFM Workspace) since this procedure uses the “Data Source Name”
to get the information on where to extract the data. It seems really redundant (and it really is), but the
extract procedure Java code needs both “Data Source Name” from HFM workspace and the database
user and password from ODI Topology to work properly.

Figure 9- HFM workspace

The second logical schema may probably already exists in your environment (if you are following the
examples given in the first article), which is related to the HFM application that you will extract data
from. After both logical schemas are properly created and setup in ODI Topology, double click the export
procedure in ODI, open the first step “Get HFM DB Connections”, click on “Command on source” and
change the schema to the one that will hold the HFM extract tables.

Figure 10- Change Extract DB logical schema

Do the same thing on “Extract Data from HFM” step and set the appropriated logical schema that is
related to your HFM application.

Figure 11- HFM logical schema setup

After this setup, we just need to populate the procedure options. The table below lists all the available
options and a description of how to use them.

Option Description E.g. Values
EXTRACT_DNS This option refers to the HOST

attribute that will be mapped
on mapDbConnectInfo API
object. Its value is the same one
that you have in "Consolidation
Administration\Configure
DNS\Data Source Name" inside
your HFM application
workspace.

HFM_ETL_DEV

EXTRACT_POV Specifies the POV for extract
operation.

A#{[Base]}; HEADCOUNTTOTPB.
C1#TopCustom1.
C2#TopCustom2.
C4#TopCustom4.
I#[ICP Top].
S#ACTUAL_USD.
W#PERIODIC.
Y#2017.
V#<Entity Curr Total>.
P#Nov.
E#{TOPLF.[Base]}.
C3#TopCustom3;PD

EXTRACT_PREFIX Prefix that will be used to create
the HFM extract tables inside
the database.

TIEOUT
TRG
EXT

EXTRACT_TYPE Specifies the parameters for
extraction Type.

DATA_EXTRACT_TYPE_FLAG.
EA_EXTRACT_TYPE_STANDARD

INCLUDE_CALCULATED Defines if calculated members
will be extracted or not.

True
False

LOG_LOCATION Log File Location and name. C:/Temp/HFM_Extract.log

Table 2- Extract procedure options

Since all options are self-explanatory and have further detailed explanation on the ODI procedure “help”
field of each of them if needed, we may just add this procedure in an ODI package and populate the
options.

Figure 12- Extract procedure example

After the options are filled properly, we just need to run the ODI package. If all goes well, you will see
green steps in the ODI Operator, indicating that the data was successfully extracted from the HFM
application. You may also check the fact and dimension tables created on the database and the log that
HFM generated for this process

Figure 13- HFM Fact table example

Figure 14- HFM Dimension table example

Figure 15- HFM Extract log

As we can see, this is a very easy and transparent way to extract data from HFM. If you need to do some
extra ETL on this extracted data, you just need to create other interfaces to manipulate the data even
further.

Conclusion: HFM/ODI integration in a real environment

This article demonstrates the true power of ODI as a development platform. ODI is far from being just
another ETL tool, as it goes way beyond this scope to give us the opportunity to implement any kind of
connectivity between virtually any existing technologies. With a little setup and a couple of redesigned
KMs, we were able to re-implement the old HFM/ODI connectivity, allowing us to do any kind of ETL on
the necessary data before loading or extracting it, systematically and easily, to/from HFM.

These new KMs and procedures have already proven their worth on real projects where several ODI jobs
created using the old HFM KMs needed to be replaced by the new ones, as the company was upgrading
HFM to a newer version. This was a great accomplishment since there was no need to install any new
application to the environment, like FDMEE; further, all the legacy ODI codes could be reused, since the

only change necessary to make ODI work in the new version of HFM was to replace the old KMs with the
new ones and do some minor adjustments in its topology, data stores and interface options.

For new HFM implementations, the users could use ODI to create robust, scalable and enterprise
integration solutions with very little development complexity, as the new ODI KMs abstract all the hard
logic inside of them and can be reused as many times as necessary. Also, with ODI, users can integrate
any kind of metadata and data sources into/from HFM, guaranteeing that all business requirements are
fully implemented, even the more complex ones.

ODI is a dynamic and powerful tool that can provide an excellent platform for creating and maintaining
EPM environments. This article demonstrates that we are limited in its use only by our imagination.
With a few changes in the KMs we can overcome the boundaries of the default development, achieving
a new level of excellence and thereby providing the increased flexibility, reliability and scalability to
meet the challenges of a global and competitive environment.

About the Authors

Oracle ACE Rodrigo Radtke is a Software Development Consultant at Dell, where he specializes in ODI
and EPM tools. A computer engineer experienced in software development, especially in the BI for
Finance space, he is a certified professional on Oracle Data Integrator, Oracle SQL Expert, and Java (SCJP
and SCWCD).

Oracle ACE Ricardo Giampaoli, a Master in Administration and system analyst, has been working in the
IT environment for 20 years, the last nine years as an EPM consultant. He is a certified professional on
Hyperion Planning, Essbase, OBIEE and ODI, and works with a great variety of Oracle tools.

Rodrigo and Ricardo frequently share their expertise by presenting at Kscope and other events and via
their blog: https://devepm.com/

Appendix

IKM and Extract procedure downloads
https://drive.google.com/drive/folders/0B6qArlZmuBsaYnpRVVNzeVJvV2M

OTN Article - Integrating HFM 11.1.2.4 with ODI Metadata Knowledge Module (first article)
http://www.oracle.com/technetwork/articles/bi/giampaoli-hfm-odi-km-3748317.html

HFM Javadoc
https://docs.oracle.com/cd/E40248_01/epm.1112/hfm_javadoc/index.html

HFM Developer and Customization Guide
http://docs.oracle.com/cd/E57185_01/HFMCD/hfm_customdev.html

HFM Administrator's Guide
http://docs.oracle.com/cd/E57185_01/HFMAD/toc.htm

Eclipse Home Page
https://eclipse.org/

https://devepm.com/
https://drive.google.com/drive/folders/0B6qArlZmuBsaYnpRVVNzeVJvV2M
http://www.oracle.com/technetwork/articles/bi/giampaoli-hfm-odi-km-3748317.html
https://docs.oracle.com/cd/E40248_01/epm.1112/hfm_javadoc/index.html
http://docs.oracle.com/cd/E57185_01/HFMCD/hfm_customdev.html
http://docs.oracle.com/cd/E57185_01/HFMAD/toc.htm
https://eclipse.org/

