Loading and Extracting HFM 11.1.2.4 data with ODI Knowledge Modules
Introduction

Oracle Hyperion Financial Management (HFM) is an Enterprise Performance Management (EPM) tool
that provides financial consolidation and reporting that enable users to rapidly consolidate and report
financial results, meet global regulatory requirements, reduce the cost of compliance, and deliver
confidence in the numbers.

Like other EPM tools, HFM relies on dimensions (metadata) and fact measures (data) that are loaded
into the tool and used to create reports. Prior to its latest version (11.1.2.4), HFM could use Oracle Data
Integrator (ODI) to load such metadata and data into the tool, which led large companies to build large
environments around HFM and ODI integrations.

However, in HFM's latest version, Oracle decided to remove its support for ODI, meaning that all HFM
integrations would have to move from ODI to manual iteration with HFM, another integration tool
would have to be used, or custom code would have to be created using the new Java HFM API. For new
HFM implementations, the impact of Oracle’s decision could perhaps be managed, but for existing
integration processes it would have a great impact, since none of the available options are smoothly
implemented within large existing environments.

This article focuses on how we can achieve data load/extract from/to HFM using ODI Knowledge
Modules (KMs) built using the new Java HFM API. With this kind of ODI KMs, companies can continue
with legacy ODI/HFM integrations without the need to drastically change integration processes or add a
new tool into their environment. New HFM implementations could also benefit from these ODI KMs,
since they allow any kind of complex ETL logic on metadata and data before easily loading it to HFM.

Since this article is the second of a two series that talks about HFM 11.1.2.4 integration with ODI (the
first article may be found at the OTN webpage, which link is in the Appendix Section) we will skip the
details around HFM integration’s current state, HFM Java API architecture requirements and ODI agent
configuration. Instead we will focus on how the ODI IKM for data load and the ODI procedure for data
extract were created and how to use them.

ODI Data Integration Knowledge Module for HFM 11.1.2.4

This section will describe the concepts used to create the ODI Data IKM for HFM11.1.2.4. Although the
majority of ODI/HFM developers will want only to import the ODI IKM (links to its download can be
found in the APPENDIX section) and use it in their projects, this article will describe the main steps and
decisions that were made to create this IKM. Understanding how it works behind the scenes will allow
you to make changes to its code if necessary.

Similarly to the Metadata IKM shown in the first article, the Data IKM will also try to automate the
manual steps that are used to load data to HFM. In resume, ODI will create a data file based on the
source tables, send this data file to HFM and optionally ODI may send a consolidation task to HFM based
on a consolidation POV.

ODlI creates a data file HFM completes the task <Optional> ODI sends
—> = P > —

and sends to HFM and generates a log consolidation command

ODI ' ODlI

HFM HFM

Figure 1- ODI data load to HFM

ODI Data IKM is fairly simple and contains only four steps. The first one (Generate File) is responsible to
generate a valid HFM data file based on the source tables mappings. This gives the user the ability to
create any kind of ETL process before loading that data to HFM, as is expected from any ODI interface.

Command
Generate File
Load File
Consolidate
Delete File

Figure 2- ODI IKM Data steps

The data file that is created by ODI is very simple and straight forward as it will only contain “IDATA” as
a header and below that the POV where this data will be loaded into HFM. This file will be created
temporarily on the location set by “DAT_FILE_LOCATION” IKM option and may be set to be deleted after
the load is completed depending on the “DELETE_LOAD_FILE” option.

|&=] HFMData dat 3 \

'DATR

LCTUAL_LOCAL;2016;Mar;Eeriodic;1575;<Entity Currency>;21117;1006;SUPP_Panama; Comm_Bus_Org_ CH; [None] ;LOAD; 1000
ACTUAL_LOCAL;2016;Mar;Periodic;1575;<Entity Currency>;21112;1375;5UPP_Panama;Comm_Bus_Org CH; [None];LORD; 1000
ACTUAL_LOCAL;2016;Mar;Eeriodic;1030;<Entity Currency>;PSADJ; [ICP Nonel;SUPP_Panama;Comm Bus_Org CH; [None];LOAD; 1000
ACTUAL_LOCAL;2016;Mar;Eeriodic;lS?S;(Entity Currency>;87503; [ICP Nonel;SUPP_Panama; Comm Bus_Org_CH; [None];LOAD; 1000
ACTUAL_LOCAL;2016;Mar;Eeriodic;1030;<Entity Currency>;GSADJ; [ICP Nonel;SUPP_Panama; Comm Bus_Org_CH; [None];LOAD; 1000
ACTUAL LOCAL;2016;Mar; Periodic;1525;<Entity Currency>;PSADJ; [ICP None] ; SUPP_Panama;Comm Bus_ Org CH; [None] ; LORD; 1000
ACTUAL LOCRL;2016;Mar;Periodic;1575;<Entity Currency>;21112;3750;5UPP Panama;Comm Bus Org CH; [None];LORD;1000

9 ACTUAL LOCRAL;2016;Mar; Periodic;1525;<Entity Currency>;GSADJ; [ICP None] ; SUPP_Panama;Comm Bus Org CH; [None] ; LOAD; 1000

== SN . Y ST Y

Figure 3- Example of HFM data file

The second step (Load File) is a little bit more complex and it is the place where the new HFM Java APl is
called to login into HFM application, set the load options based on what the user developed in the ODI
interface, load the pre-generated file into HFM and finally getting any log that this data load may have
generated (including “bad data” members).

The third step (Consolidate) is optional as you may select if you wish to run a consolidation task after the
data load or not based on “CONSOLIDATE_AFTER_LOAD” option. If the user selects to run data
consolidation, ODI will get “CONSOLIDATE_POV” option and send it as a parameter to HFM
consolidation process. The pattern used for the consolidation POV is the same one as used in prior
versions of HFM KMs, as for example “SHACTUAL _USD.Y#2016.P#Mar.E#3450". This example would
consolidate the data based on ACTUAL_USD Scenario, 2016 Year, Mar Period and 3450 Entity members.

The forth step (Delete File) is also optional, since you may select to delete or not the data file created for
this data load process. This option is very useful for debugging processes where you may check exactly
what was sent to HFM but probably the developers will set it to “True” on production environments,
meaning that ODI will delete the file automatically after the data load process.

ODI IKM Data usage

After HFM data store information is correctly reversed inside ODI with the new ODI RKM (showed in the
first article) and the new "IKM SQL to Hyperion Financial Management Data 11.1.2.4 Java API" is
imported, it's time to build the data load interface. You'll notice that it has many more options than the
old IKM for HFM Data. This is because the new IKM basically works in a two-step process: first it creates
a data file in a folder location, then it gets this data file and loads it to HFM.

The creation of this data file has some setups that need to be defined in the ODI interface object, for
which we use the IKM options. The table below lists all the available options and a description of how to

use them.
Option Description E.g. Values
CONSOLIDATE_ONLY Flag to indicate if thisis | True
Consolidate only False
process.
IMPORT_MODE Specifies one of the DATALOAD DUPLICATE_
load options. HANDLING.DATALOAD_MERGE
ACCUMULATE_WITHIN_FILE Flag to indicate True
whether to accumulate | False
values in the load data.
CONSOLIDATE_AFTER_LOAD Flag to indicate True
whether consolidate False

should be performed
after the data load.

CONSOLIDATE_POV

Specifies the
parameters for
consolidate operation.

SHACTUAL_USD.Y#2016.P#Mar.E#3450

CONSOLIDATE_TYPE

Specifies the
parameters for
consolidate Type.

WEBOMDATAGRIDTASKMASKENUM.
WEBOM_DATAGRID_TASK_CONSOLIDATE

DAT_FILE_DELIMITER

Defines which delimiter
will be used in the .DAT
file creation.

H

DAT_FILE_LOCATION

Defines the folder
location where the
.DAT file will be created
and stored before
loading to HFM.

C:/Temp/HFM_Load.dat

DELETE_LOAD_FILE

Flag to indicate if .DAT
file should be deleted in
the end of the process
or not.

True
False

LOG_LOCATION

Log File Location and
name.

C:/Temp/HFM_Load.log

Table 1- IKM Data options

Since all options are self-explanatory and have further detailed explanation on the ODI IKM “help” field
of each of them, we may start to create the ODI interface itself. In this example we will load data from
an Oracle table. Its creation is the same as any other interface: you may do joins, filters, ETL

modifications to the mapped columns, and so on.

Figure 4- ODI interface example

Mapping
XXFMOO3_DATA_LOAD.HFM_SCENARIO
XXFMOO3_DATA_LOAD.HFM_YEAR
XXFM0O3_DATA_LOAD,HFM_PERIOD
XXFMOO3_DATA_LOAD.HFM_VIEW
XXFM003_DATA_LOAD,HFM_ENTITY
XXFM0O3_DATA_LOAD.HFM_VALUE
XXFM003_DATA_LOAD.HFM_ACCOUNT
XXFM003_DATA_LOAD.HFM_ICP
XXFM003_DATA_LOAD.HFM_CUSTOM1
XXFMOO3_DATA_LOAD.HFM_CUSTOM2
XXFM0O3_DATA_LOAD.HFM_CUSTOM3
XXFMOO3_DATA_LOAD.HFM_CUSTOM4
XXFMOO3_DATA_LOAD.HFM_DATA

2 Data Load to HFM 11.1.2.4 * |
AQox ~ P B A BE
= Target Datastore - HFMData
Paosition Indicators Name
[T 2 - XXFM0O3_DATA_LOAD (XXFMOC B 15 % o
V' g—"HFI_SCENARIO {68 20 Gy Year
V' @="HFM_ENTITY 3 Uy Period
V' @="HFM_ACCOUNT \ 4 A View
V ge"HFM_VIEW N\ 5 % Entity
V g="HFM_VALUE \ 6 % Value
V g="HFM_ICP 0% Account
V' = "HFM_CUSTOMI 86 “ icp
V' g"HFM_CUUSTOM2 s Custom1
V' g "HFM_CUSTOM3 ﬁ 2 gixi
V g "HFM_CUSTOM4 /; S % S et
g1 TM_PERIOD 13 By DataValue
N = *HFM YEAR

Note that, since our target is an HFM application, we need to set our Staging Area to a valid Oracle
Logical Schema (probably the same used in our source data store) in order to do any ETL to the data.

'%Datal.nadtnlfﬂll.l.u Xl

Definition Interface [Folder: XX - No deployment]
Markers .

Memo Name: Data Load to HFM 11.1.2.4]
Versien Optimization Context: ‘Deuelopment

Privileges

Flexfields [v] Staging Area Different From Target

Orade: HFM_ETL2

Figure 5- Set the correct Staging Area

In the Flow tab, select the options needed for your integrations and execute the interface. If all goes
well, you will see green steps in the ODI Operator, indicating that the data was successfully loaded to
the HFM application. You may also check the data file created on the folder that you added in the IKM

option and the log that HFM generated for this process.

| HFMData_Load.log - Notepad
File Edit Format View Help

starting Process

Getting Token

Connecting to HFM Application.
Connected to HFM Application.
Absolute path for load
C:\Temp\HFMData.dat

Data loading starting...

Getting Status:

USERACTIVITYSTATUS COMPLETED

Load data started: 6/7/2017 12:25:56.

Load data completed: 6/7/2017 12:25:56.

Data load finished.

Job Completed.

Starting Process

Getting Token

Connecting to HFM Application.
Connected to HFM Application.
Data consolidation starting...
Getting Status:
USERACTIVITYSTATUS COMPLETED
Data consolidation finished.
Job Completed.

Figure 6- HFM data load log

As we can see, this is a very easy and transparent way to load data into HFM, using the same approach
as the old version of ODI/HFM KMs.

ODI Data Extract procedure for HFM 11.1.2.4

First of all we need to understand why we are using an ODI procedure instead of an ODI KM for data
extraction processes. The reason behind this decision was based on the nature of HFM data extracts,
which automatically creates the outbound tables for the users containing all the extracted data and
dimensions related to it. For example, when we send an extract command to HFM with a certain POV,
HFM will create a fact table and a table for each dimension it contains using a pre-determined prefix
(called “TIEOUT” in this article’s example).

TIEOUT_ACCOUNT
TIEQOUT_CUSTOM1
TIEOUT_CUSTOMz2
TIEQOUT_CUSTOM3
TIEOUT_CUSTOM4
TIEQOUT_ENTITY
TIEQUT_FACT
TIEQUT_ICF
TIEQUT_PARENT
TIEQUT_PERIOD
TIEOUT_SCENARIO
TIEQOUT_VALUE
TIEQUT VIEW

TIECUI_YEAR
Figure 7- Tables automatically created by HFM Extract process

Since HFM create those tables automatically for the users, there is no reason to have an ODI interface to
map it since the data would not go to the target table in the ODI interface but instead the data would go
to those pre-defined HFM tables. Of course that we could elaborate an ODI KM that could send the
extract command to HFM, which would populate the fact and dimension tables automatically and after
that the KM code would read those tables and populate another target table that would be set in the
ODl interface but the complexity to do that is not worth the work. It is way easier to run a procedure
that will run the HFM extract and later on we may create another ODI interface that may read from
those fact and dimension tables and do any ETL that we may want with them.

The “Extract Data from HFM” procedure is very simple and only contains two steps. The first step “Get
HFM DB Connections” is used to get the DB user and password where the tables will be created. This DB
connection needs to be the same one that is configured in HFM “Configure DNS” setup (more about that
in a few).

';-j}laxtractnataﬁomm Xl
/Deﬁnihon

f Details Order Command

¥, Options 10 Get HFM DB Connections
20 Extract Data from HFM

- Ny

Figure 8- Extract procedure steps

The second step “Extract Data from HFM” contains the Java code that connects to HFM and send the
extract command using a certain POV and a table prefix for the tables’ creation.

ODI Extract Data Procedure usage

After importing “Extract Data from HFM” procedure into ODI you will need to create two ODI logical
schemas. The first logical schema will point to the database where the extract tables will be created and

this DB needs to be the same one that you configured in HFM “Configure DNS” setup (found at
“Consolidation Administration” on HFM Workspace) since this procedure uses the “Data Source Name”
to get the information on where to extract the data. It seems really redundant (and it really is), but the
extract procedure Java code needs both “Data Source Name” from HFM workspace and the database
user and password from ODI Topology to work properly.

l Consolidation Administration *

Admin Tasks 8 configure DsN
B Acionsv Viewy o Z R @)
System Data Source Name Database Type Database Name Username Host Port Default Tablespace/Flegroup Index Tablespace/Filegroup
Applcations 1 HFM_ETL_SIT Orade HFM_ETL_SIT ST1_HFM_ETL HFM_ETL_SIT 1521
a Import Application
Fﬁ Profile Editor
a8 Configure DSN
= Task Flows

Audit
Figure 9- HFM workspace

The second logical schema may probably already exists in your environment (if you are following the
examples given in the first article), which is related to the HFM application that you will extract data
from. After both logical schemas are properly created and setup in ODI Topology, double click the export
procedure in ODI, open the first step “Get HFM DB Connections”, click on “Command on source” and
change the schema to the one that will hold the HFM extract tables.

 S3Extract Data from HFM * |

/ Definition = General

i Detais Name: [Get HFM DB Connections

i, Options Log Counter: |“<Undeﬁned> VI Log Level: i:*
(> Execution [] 1gnore Errors [[] Log Final Command
E Scenarios

[‘Command on Target | Command on Source

¢4 Markers
X Technology: |Orade v| Transaction tign: |<Undefined> v|
| Memo

8 version Context: |<Execution Context> v| schema: HFM_ETL2 -|

. PlNdegEs Transaction: |Autocommit v| Commit:

[Flexfields Command: V4
Lines

{5} Get HFM DB Connec...
Figure 10- Change Extract DB logical schema

Do the same thing on “Extract Data from HFM” step and set the appropriated logical schema that is
related to your HFM application.

 S3Extract Data from HFM * |

/ Definition - General
i Detais Name: Extract Data from HFM
= Option: -
ﬁ‘ pRas Log Counter: |<Undefined> - Log Level: 3-,%
Execution : Yo
D Ignore Errors |] Log Final Command
Q Scenarios 1
Command on Target | Command on Source
P4 Markers
X Technology: |Hyperion Financial Management - Transaction Is
2| Memo
= Context: <Execution Context> - Schema:
7% Version
. | it
n Privieges Transaction: |Autocommit - Commit:
(7] Flexfields Command:

Lines
‘o7 Extract Data from...

Figure 11- HFM logical schema setup

: | <Undefined>

HFM_LOGICAL

After this setup, we just need to populate the procedure options. The table below lists all the available
options and a description of how to use them.

Option
EXTRACT_DNS

Description

This option refers to the HOST
attribute that will be mapped
on mapDbConnectinfo API
object. Its value is the same one
that you have in "Consolidation
Administration\Configure
DNS\Data Source Name" inside
your HFM application
workspace.

E.g. Values
HFM_ETL_DEV

EXTRACT_POV

Specifies the POV for extract
operation.

A#{[Base]}; HEADCOUNTTOTPB.
Cl#TopCustoml.
C2#TopCustom?2.
C4#TopCustom4.
I#[ICP Top].
SHACTUAL_USD.
WHPERIODIC.
Y#2017.

V#<Entity Curr Total>.
P#Nov.
E#{TOPLF.[Base]}.
C3#TopCustom3;PD

EXTRACT_PREFIX

Prefix that will be used to create
the HFM extract tables inside
the database.

TIEOUT
TRG
EXT

EXTRACT_TYPE

Specifies the parameters for
extraction Type.

DATA_EXTRACT_TYPE_FLAG.
EA_EXTRACT_TYPE_STANDARD

INCLUDE_CALCULATED

Defines if calculated members
will be extracted or not.

True
False

LOG_LOCATION

Log File Location and name.

C:/Temp/HFM_Extract.log

Table 2- Extract procedure options

Since all options are self-explanatory and have further detailed explanation on the ODI procedure “help”
field of each of them if needed, we may just add this procedure in an ODI package and populate the

options.

N L L S S e

(> Plugins ! m
i
f

& sAP Extract Data'lrnm

(= Utiities HEM v
< 2>

Properties

| General |

Option Value

LOG_LOCATION <Default>:C:/Temp/HFM Excract.log ™

EXTRACT_TYPE <Defaulv>:DATR EXTRACT TYPE FLAG.ER EXTRACT TYPE STANDARD

EXTRACT_DNS HFM ETL_SIT

EXTRACT_POV Ag{[Base] } ;NET_SHIPMENTS;GROSS_SHIPMENTS;HEADCOUNTTOTPB.C1#TopCus..

EXTRACT_PREFIX
INCLUDE_CRLCULATED

Figure 12- Extract procedure example

TIEOUT

<Default>:true

After the options are filled properly, we just need to run the ODI package. If all goes well, you will see
green steps in the ODI Operator, indicating that the data was successfully extracted from the HFM
application. You may also check the fact and dimension tables created on the database and the log that

HFM generated for this process

select * from TIEQUI_FACT;

tOutput x [P QueryResult x
) Gk sqL | Fetched 50 rows in 0.209 seconds

{ scenagiom [vearm [{} periopm |4 viewmn [{ entrrvo [{) parenTio [vawuem [accounto [4 1o

{ cusTomu | cusTomaip |} cusTomam [{} customa | poata

2 2017 67108873 1 289 277 is 2295 2130706433 96 a3
2 2017 67108873 1 289 277 15 2296 2130706433 96 g3
2 2017 67108873 1 289 277 15 2302 2130706433 96 g3
2 2017 &7108873 2k 289 27 15 2310 2130706433 96 g3
Figure 13- HFM Fact table example
select * from ST1 HFM ETL.TIEOUT CUSTOM1;
tOutput x [QueryResult x
) ER soL | Fetched 50 rows in 0.22 seconds
41D |{ LasEL {} PARENTID |{} PARENTLABEL |{ DESCRIPTION
96 TopCustoml -1 (null) (null)
95 SUPPORT_GEOGRAPHY 96 TopCustoml (null)

3 SUPP_Americas
17 SUPE_Cayman_Islands
20 SUPP_Colombia
102 SUPP_AmericasIX_Supp
12 SUPP_Brazil
4 SUPP_Americas_Supp
7 SUPP_Argentina

Figure 14- HFM Dimension table example

95 SUPPCRT_GEOGRAPHY Americas

3 SUPP_Americas
3 SUPP_Americas
3 SUPP_Americas
3 SUPP_Americas
3 SUPP_Americas
3 SUPP_Americas

Cayman Islands
Colombia
AmericasIX Supp
Brazil

Americas Support
Argentina

7

7
7
T

6 1236378.53
€ 2130
6 3847765.8800000004
6 -5654.8799999999974

Starting Process

Getting Token

Connecting to HFM Application.
Connected to HFM Application.
Data extract starting...
Session ID:1883700720
USERACTIVITYSTATUS COMPLETED

LHPELTEEEEET T EELT T EEL TR LR PR TR R LT T E T

// Financial Management Data Extract

[/ Date: 6/9/2017 6:51:84 PM

// User: admin@Native Directory

// Source Financial Management Application: FINCDEV

// Destination: TIEOUT

// Extract Type: Financial Management Standard Star Schema

// Delimiter: ;
// Include Data: Yes

// Dynamic Accounts: Yes

Figure 15- HFM Extract log

As we can see, this is a very easy and transparent way to extract data from HFM. If you need to do some
extra ETL on this extracted data, you just need to create other interfaces to manipulate the data even
further.

Conclusion: HFM/ODI integration in a real environment

This article demonstrates the true power of ODI as a development platform. ODI is far from being just
another ETL tool, as it goes way beyond this scope to give us the opportunity to implement any kind of
connectivity between virtually any existing technologies. With a little setup and a couple of redesigned
KMs, we were able to re-implement the old HFM/ODI connectivity, allowing us to do any kind of ETL on
the necessary data before loading or extracting it, systematically and easily, to/from HFM.

These new KMs and procedures have already proven their worth on real projects where several ODI jobs
created using the old HFM KMs needed to be replaced by the new ones, as the company was upgrading
HFM to a newer version. This was a great accomplishment since there was no need to install any new
application to the environment, like FDMEE; further, all the legacy ODI codes could be reused, since the

only change necessary to make ODI work in the new version of HFM was to replace the old KMs with the
new ones and do some minor adjustments in its topology, data stores and interface options.

For new HFM implementations, the users could use ODI to create robust, scalable and enterprise
integration solutions with very little development complexity, as the new ODI KMs abstract all the hard
logic inside of them and can be reused as many times as necessary. Also, with ODI, users can integrate
any kind of metadata and data sources into/from HFM, guaranteeing that all business requirements are
fully implemented, even the more complex ones.

ODl is a dynamic and powerful tool that can provide an excellent platform for creating and maintaining
EPM environments. This article demonstrates that we are limited in its use only by our imagination.
With a few changes in the KMs we can overcome the boundaries of the default development, achieving
a new level of excellence and thereby providing the increased flexibility, reliability and scalability to
meet the challenges of a global and competitive environment.

About the Authors

Oracle ACE Rodrigo Radtke is a Software Development Consultant at Dell, where he specializes in ODI
and EPM tools. A computer engineer experienced in software development, especially in the Bl for
Finance space, he is a certified professional on Oracle Data Integrator, Oracle SQL Expert, and Java (SCJP
and SCWCD).

Oracle ACE Ricardo Giampaoli, a Master in Administration and system analyst, has been working in the
IT environment for 20 years, the last nine years as an EPM consultant. He is a certified professional on
Hyperion Planning, Essbase, OBIEE and ODI, and works with a great variety of Oracle tools.

Rodrigo and Ricardo frequently share their expertise by presenting at Kscope and other events and via
their blog: https://devepm.com/

Appendix

IKM and Extract procedure downloads
https://drive.google.com/drive/folders/0B6gArlZmuBsaYnpRVVNzeVIJvV2M

OTN Article - Integrating HFM 11.1.2.4 with ODI Metadata Knowledge Module (first article)
http://www.oracle.com/technetwork/articles/bi/giampaoli-hfm-odi-km-3748317.html

HFM Javadoc
https://docs.oracle.com/cd/E40248 01/epm.1112/hfm javadoc/index.html

HFM Developer and Customization Guide
http://docs.oracle.com/cd/E57185 01/HFMCD/hfm customdev.html

HFM Administrator's Guide
http://docs.oracle.com/cd/E57185 01/HFMAD/toc.htm

Eclipse Home Page
https://eclipse.org/

https://devepm.com/
https://drive.google.com/drive/folders/0B6qArlZmuBsaYnpRVVNzeVJvV2M
http://www.oracle.com/technetwork/articles/bi/giampaoli-hfm-odi-km-3748317.html
https://docs.oracle.com/cd/E40248_01/epm.1112/hfm_javadoc/index.html
http://docs.oracle.com/cd/E57185_01/HFMCD/hfm_customdev.html
http://docs.oracle.com/cd/E57185_01/HFMAD/toc.htm
https://eclipse.org/

